\qquad

Chapter 17 Reference Sheet

Conversions between Joules and calories

- $1 \mathrm{~J}=0.2390$ calories $\quad 1$ calorie $=4.184 \mathrm{~J}$

Specific Heat

- $\mathrm{C}=\frac{\mathrm{q}}{\mathrm{m} \Delta \mathrm{T}}$

Units for C are $\mathrm{J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$ or cal $/\left(\mathrm{g}^{\circ} \mathrm{C}\right)$

- $q=$ heat in Joules or calories

$$
\mathrm{m}=\frac{\mathrm{q}}{\mathrm{C} \Delta \mathrm{~T}}
$$

$\Delta T=\frac{q}{m C}$

- $\mathrm{m}=$ mass in grams
- $\Delta \mathrm{T}=$ final - initial temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{q}=\mathrm{Cm} \Delta \mathrm{T}$

Enthalpy Change

- $\mathrm{q}=\Delta \mathrm{H}$
- $q_{\text {surr }}=m \times C \times \Delta T$
- $q_{\text {sys }}=\Delta H=-q_{\text {surr }}=-m \times C \times \Delta T$
- $\Delta H=-m \times C \times \Delta T$
- $q=$ heat; J or calories
- $\Delta \mathrm{H}=$ enthalpy; J or calories
- $\mathrm{m}=$ mass of the water; (g)
- $\mathrm{C}=$ specific heat of water; $\mathrm{J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$ or cal $/\left(\mathrm{g}^{\circ} \mathrm{C}\right)$
- $\Delta \mathrm{T}=$ final - initial temperature; $\left({ }^{\circ} \mathrm{C}\right)$

Chapter 19 Reference Sheet

Comparing Definitions of Acids and Bases

Type	Acid	Base
Arrhenius	H+ producer	OH- producer
Brønsted-Lowry	H+ donor	H+ acceptor
Lewis	Electron-pair acceptor	Electron-pair donor

pH and pOH Scales

NAME: \qquad

Calculations with pH and pOH

- Type 1:
$\begin{array}{lll}\circ & \text { To find } \mathrm{pOH} & \mathbf{p O H}=\mathbf{1 4}-\mathbf{p H} \\ \circ & \text { To find } \mathrm{pH} & \mathbf{p H}=\mathbf{1 4}-\mathbf{p O H}\end{array}$
- \quad pH and $p O H$ do not have a label
- Use addition and subtraction rules for Significant Digits
- Type 2:
- To find pH using hydronium concentration
$\mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}\right]+$
- To find pOH using hydroxide concentration
- Don't forget the negative sign!
- Use the EXP key for the x $10^{\#}$ portion
- pH and pOH do not have a label
- Use multiplication and division rules for Significant Digits
- Type 3:
- To find hydronium concentration using pH
$\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}=$antilog $[-\mathrm{pH}]$
- To find the hydroxide concentration using pOH
$[\mathrm{OH}]^{-}=$antilog [-pOH$]$
- Don't forget the negative sign when plugging it in to the calculator. Antilog $=10^{\mathrm{x}}$ or "shift" "LOG"
- $\left[\mathrm{H}_{3} \mathrm{O}\right]+$ and $[\mathrm{OH}]$ are labeled with " M " for Molarity / concentration
- Use multiplication and division rules for Significant Digits
- Type 4:
- To find the hydroxide concentration using the hydronium $[\mathbf{O H}]^{-}=\underline{1 \times 10-14} \mathbf{M}$
- To find the hydronium concentration using the hydroxide $\left[\mathrm{H}_{3} \mathbf{O}\right]^{+=} \underline{\mathbf{1} \times 10^{-14} \mathrm{M}}$
[OH] ${ }^{-}$
- $1 \times 10^{-14} \mathrm{M}$ is a constant and won't affect Significant Digits
- Use the EXP key for the x $10^{\#}$ portion
- $\left[\mathrm{H}_{3} \mathrm{O}\right]+$ and $[\mathrm{OH}]$ are labeled with " M " for Molarity / concentration
- Use multiplication and division rules for Significant Digits

