Chapter 17 Reference Sheet

Conversions between Joules and calories

• 1 J = 0.2390 calories 1 calorie = 4.184 J

Specific Heat

- Units for C are $J/(g \circ C)$ or cal / (g $\circ C$) C = ____ $\Delta T = \underline{q}$ m = q $m \Delta T$ $C \Delta T$ mC • q = heat in Joules or calories \circ m = mass in grams $q = C m \Delta T$ \circ $\Delta T = final - initial temperature (°C)$ **Enthalpy Change** • q = heat; J or calories $q = \Delta H$ •
- $q_{\text{surr}} = m \times C \times \Delta T$ •
- $q_{\text{sys}} = \Delta H = -q_{\text{surr}} = -m \times C \times \Delta T$
- $\Delta H = -m \times C \times \Delta T$

- \circ Δ H = enthalpy; J or calories
- \circ m = mass of the water; (g)
- C = specific heat of water; $J/(g^{\circ}C)$ or cal / (g^{\circ}C)
- \circ ΔT = final initial temperature; (°C)

Chapter 19 Reference Sheet

Comparing Definitions of Acids and Bases

Туре	Acid	Base
Arrhenius	H+ producer	OH- producer
Brønsted-Lowry	H+ donor	H+ acceptor
Lewis	Electron-pair acceptor	Electron-pair donor

pH and pOH Scales

Calculations with pH and pOH

- *Type 1:*
 - To find pOH pOH = 14 pH
 - To find pH pH = 14 pOH
 - *pH and pOH do not have a label*
 - Use addition and subtraction rules for Significant Digits
- *Type 2:*
 - To find pH using hydronium concentration $pH = -\log [H_3O] +$
 - \circ To find pOH using hydroxide concentration
 - pOH = log [OH][.]
 - Don't forget the negative sign!
 - Use the EXP key for the x 10[#] portion
 - *pH and pOH do not have a label*
 - Use multiplication and division rules for Significant Digits
- *Type 3:*
 - To find hydronium concentration using pH [H₃O] + = antilog [pH]
 - To find the hydroxide concentration using pOH **[OH]**⁻ = antilog [pOH]
 - **Don't forget the negative sign when plugging it in to the calculator.** Antilog = 10^x or "shift" "LOG"
 - [H₃0] + and [OH]⁻ are labeled with "M" for Molarity / concentration
 - Use multiplication and division rules for Significant Digits
- *Type 4:*
 - To find the hydroxide concentration using the hydronium $[OH]^{-14} = \frac{1 \times 10^{-14} M}{[H_3O]^{+14}}$
 - To find the hydronium concentration using the hydroxide $[H_3O] = \frac{1 \times 10^{-14} M}{[OH]^{-14}}$
 - 1 x 10 ⁻¹⁴ M is a constant and won't affect Significant Digits
 - Use the EXP key for the x 10[#] portion
 - [H₃O] + and [OH]⁻ are labeled with "M" for Molarity / concentration
 - Use multiplication and division rules for Significant Digits

