$\qquad$

## Chapter 14 Reference Sheet

- Boyle's Law
- $\mathrm{V}_{1} \mathrm{P}_{1}=\mathrm{V}_{2} \mathrm{P}_{2}$
- $\mathrm{V}_{1}=$ Initial volume (can be in $\mathrm{mL}, \mathrm{L}, \mathrm{cm}^{3}$ )
- $\mathrm{V}_{2}=$ Final volume (can be in $\mathrm{mL}, \mathrm{L}, \mathrm{cm}^{3}$ )
- $P_{1}=$ Initial pressure (can be in mm of $\mathrm{Hg}, \mathrm{atm}, \mathrm{kPa}$ )
- $P_{2}=$ Final pressure (can be in mm of $\mathrm{Hg}, \mathrm{atm}, \mathrm{kPa}$ )
- Charles' Law
- $V_{1} T_{2}=T_{1} V_{2}$
- $\mathrm{V}_{1}=$ Initial volume (can be in $\mathrm{mL}, \mathrm{L}, \mathrm{cm}^{3}$ )
- $V_{2}=$ Final volume (can be in $\mathrm{mL}, \mathrm{L}, \mathrm{cm}^{3}$ )
- $\mathrm{T}_{1}=$ Initial temperature (must be in Kelvins!)
- $\mathrm{T}_{2}=$ Final temperature (must be in Kelvins!)

$$
\begin{array}{ll}
\mathrm{V}_{1}=\frac{\mathrm{T}_{1} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} & \mathrm{~T}_{1}=\frac{\mathrm{V}_{1} \mathrm{~T}_{2}}{\mathrm{~V}_{2}} \\
\mathrm{~V}_{2}=\frac{\mathrm{V}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}} & \mathrm{~T}_{2}=\frac{\mathrm{T}_{1} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}
\end{array}
$$

- Gay-Lussac's Law
- $P_{1} T_{2}=P_{2} T_{1}$
- $\mathrm{T}_{1}=$ Initial temperature (must be in Kelvins!)

$$
T_{1}=\frac{P_{1} T_{2}}{P_{2}} \quad P_{1}=\frac{T_{1} P_{2}}{T_{2}}
$$

- $\mathrm{T}_{2}=$ Final temperature (must be in Kelvins!)
- $P_{1}=$ Initial pressure (can be in $m m$ of $\mathrm{Hg}, \mathrm{atm}, \mathrm{kPa}$ )
- $\mathrm{P}_{1}=$ Initial pressure (can be in mm of $\left.\mathrm{Hg}, \mathrm{atm}, \mathrm{kPa}\right)$

$$
\begin{array}{ll}
\mathrm{V}_{1}=\frac{\mathrm{V}_{2} \mathrm{P}_{2}}{\mathrm{P}_{1}} & \mathrm{P}_{1}=\frac{\mathrm{V}_{2} \mathrm{P}_{2}}{\mathrm{~V}_{1}} \\
\mathrm{~V}_{2}=\frac{\mathrm{V}_{1} \mathrm{P}_{1}}{P_{2}} & \mathrm{P}_{2}=\frac{\mathrm{V}_{1} \mathrm{P}_{1}}{\mathrm{~V}_{2}}
\end{array}
$$

$$
T_{2}=\frac{T_{1} P_{2}}{P_{1}}
$$

$$
\mathrm{P}_{2}=\frac{\mathrm{P}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}}
$$

- Combined Gas Law
- $\mathrm{V}_{1} \mathrm{P}_{1} \mathrm{~T}_{2}=\mathrm{V}_{2} \mathrm{P}_{2} \mathrm{~T}_{1}$
- Temperature must be in Kelvins!

$$
\begin{array}{lll}
\mathrm{T}_{1}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1} T_{2}}{\mathrm{P}_{2} \mathrm{~V}_{2}} & \mathrm{P}_{1}=\frac{\mathrm{P}_{2} V_{2} T_{1}}{T_{2} V_{1}} & V_{1}=\frac{P_{2} V_{2} T_{1}}{P_{1} T_{2}} \\
\mathrm{~T}_{2}=\frac{P_{2} V_{2} T_{1}}{P_{1} V_{1}} & P_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} V_{2}} & V_{2}=\frac{P_{1} V_{1} T_{2}}{P_{2} T_{1}}
\end{array}
$$

- Ideal Gas Law
- $P V=n R T$
- $\mathrm{P}=$ pressure (atm, torr, kPa )
- $\mathrm{V}=$ volume (can be in $\mathrm{mL}, \mathrm{L}, \mathrm{cm}^{3}$ )
- $\mathrm{n}=$ amount of gas/\# of particles (moles)
- $\mathrm{T}=$ temperature (must be in Kelvins!)
- $R=$ CONSTANT (won't affect significant digits)
- Look at units for pressure to choose correct R

$$
\begin{array}{ll}
P=\frac{n R T}{V} & n=\frac{P V}{R T} \\
V=\frac{n R T}{P} & T=\frac{P V}{n R}
\end{array}
$$

$$
\begin{array}{cll}
\circ & \text { If } P \text { is in atm: } & R=0.08207 \\
\circ & \text { If } P \text { is in torr: } & R=62.36 \\
O & \text { If } P \text { is in } k P a: & R=8.315
\end{array}
$$

## Remember STP:

Temperature $=273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)$
Pressure $=101.3 \mathrm{kPa}(1 \mathrm{~atm})$
$\qquad$

- Dalton's Law of Partial Pressure
- Formula: $P_{\text {TOTAL }}=P_{1}+P_{2}+P_{3}+\ldots$.
- Graham's Law of Effusion
$\frac{\text { Rate of } A}{\text { Rate of } B}=\sqrt{\frac{\text { molar mass of } B}{\text { molar mass of } A}}$


## Chapter 15 and 16 Reference Sheet

- Percent by Mass of Water
$\circ \frac{\text { Mass of water }}{\text { Mass of hydrate }} \times 100 \%$
- Henry's Law
- $\quad \underline{\mathrm{S}}_{1}=\underline{\mathrm{S}}_{2}$
$P_{1} \quad P_{2}$
- $\mathrm{S}_{1}=$ solubility at $1^{\text {st }}$ pressure $(\mathrm{g} / \mathrm{L})$

$$
\begin{array}{ll}
\mathrm{S}_{1}=\frac{\mathrm{S}_{2} \mathrm{P}_{1}}{\mathrm{P}_{2}} & \mathrm{P}_{1}=\frac{\mathrm{S}_{1} \mathrm{P}_{2}}{\mathrm{~S}_{2}} \\
\mathrm{~S}_{2}=\frac{\mathrm{S}_{1} \mathrm{P}_{2}}{\mathrm{P}_{1}} & \mathrm{P}_{2}=\frac{\mathrm{S}_{2} \mathrm{P}_{1}}{\mathrm{~S}_{1}}
\end{array}
$$

- $P_{1}=1^{\text {st }}$ pressure (can be in mm of Hg , atm, kPa )
- $S_{2}=$ solubility at $2^{\text {nd }}$ pressure $(g / L)$
- $\quad P_{2}=2^{\text {nd }}$ pressure(can be in mm of Hg , atm, kPa )
- Molarity (M)
- $M=\underline{\text { moles of solute }}$
- moles of solutes $=($ Molarity $)($ Liters of solution $)$
Liters of solution
- Liters of solution $=$ moles of solute Molarity
- Moles of Solute
- $M_{1} V_{1}=M_{2} V_{2}$
- $M_{1}=1^{\text {st }}$ Molarity ( $M$ )
- $\mathrm{V}_{1}=1^{\text {st }}$ Volume (can be in $\mathrm{mL}, \mathrm{L}, \mathrm{cm}^{3}$ )
$\mathrm{V}_{1}=\frac{\mathrm{V}_{2} \mathrm{M}_{2}}{\mathrm{M}_{1}} \quad \mathrm{M}_{1}=\frac{\mathrm{V}_{2} \mathrm{M}_{2}}{\mathrm{~V}_{1}}$
- $\quad M_{2}=2^{\text {nd }}$ Molarity ( $M$ )
- $V_{2}=2^{\text {nd }}$ Volume (can be in $m L, L, \mathrm{~cm}^{3}$ )

$$
\mathrm{V}_{2}=\frac{\mathrm{V}_{1} \mathrm{M}_{1}}{\mathrm{M}_{2}} \quad \mathrm{M}_{2}=\frac{\mathrm{V}_{1} \mathrm{M}_{1}}{\mathrm{~V}_{2}}
$$

- Calculating percent by volume (v/v)
- Percent by volume = volume of solute x 100\%
volume of solution
- Calculating percent by mass (m/m)
- Percent by mass = mass of solute x 100\%
mass of solution


## Converting between Pressures

$\qquad$ atm $\times 760 \mathrm{~mm} \mathrm{Hg}$
1 atm
$\ldots \operatorname{atm} \times 101.3 \mathrm{kPa}$
1 atm
$\qquad$ $\mathrm{mm} \mathrm{Hgx} \quad 1 \mathrm{~atm}$. $\ldots \mathrm{kPa} \times \ldots 1 \mathrm{~atm}$. 760 mm Hg
$\qquad$ mm Hgx 101.3 kPa

760 mm Hg
__ $\mathrm{kPa} \times 760 \mathrm{~mm} \mathrm{Hg}$ 101.3 kPa

