NAME:	

Chapter 7 - Ionic and Metallic Bonding

36	ction 7.1 – ions
1.	Valence electrons - electrons in the highest occupied
	energy level of an element's atoms
	a. The <u>number</u> of valence electrons largely determines the
	<u>Chemical</u> properties of an element
	b. Valence electrons are usually the electrons involved in
	chemical bonds / chemical reactions
	c. To determine the number of electrons:
	i. Group valence electron
	ii. Group $\frac{2}{2}$ valence electrons
	iii. Group $13 - 3$ valence electrons
	iv. Group 14 - 4 valence electrons 1 tract 10 from
	iv. Group 14 - 4 valence electrons v. Group 15 - 5 valence electrons the group number
	vi. Group 16 – 6 valence electrons
	vii. Group <u>17 – 7</u> valence electrons
	viii. Group 18 – 8 valence electrons
	1. Except Helium only has Z electrons
	ix. In the d or f block, look at electron configuration (or noble gas
	configuration)
	1. Look at the number of electrons in the highest
	energy orbital:
	a. Vanadium [Ar] 4s ² /3d ³
	i. 2 valence electrons
	b. Platinum [xe](6s1 &d9 4f14
	i valence electron
<u>?</u> .	i valence electron
	diagrams that show valence electrons in atoms of an element as dots
3.	Lewis Dot Structures
	a. In 1916, Gilbert Lewis described the Octet Rule, which refers to
	having S valence electrons.

Chemistry,	Chapter 7
Page 2	

NAME:			

b. Electron <u>Do+</u> structures can also be referred to as Lewis Structures or Lewis Dot Structures.

	Group							
Period	1	2	13	14	15	16	17	18
1	н.				evitor constant		The second secon	He:
2	Li *	·Be'	• 8	e respected introductive environment	· N .	; ö .	* F	:Ne:
3	Na*	•Mg*	·ŸI	• Šį	i i i i i i i i i i i i i i i i i i i	: \$: CI	:Ār:
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	K *	.Ca*	.Ğa'	.Ğe'		:Se	: Br	*Kr*

	Experience				PROFESSION OF STREET	to a company of the company of the company	A sometimes and the second	**************************************	1	Į.
	4		Κ.	.Ca	.Ġa'	·Ġe'	• Ås	:Še	: ĝr·	:Ķr
		oms a		Rule Hable mpounds, a		when the			alence elec	trons
_ Δ		d ions	n is Ne	eutral		because	it has equa	ll numbers (of protons a	and
			forms whe		electron		U	<u>15</u>	or	
		i.	1. Th	ney are proof ore valence \widehat{UONS}	duced whe	are negative n an atom	Los ely charged	ions		e or e or
С	ations a. Gr			tet		va of electrons				

Chemistry, Chapter	7
Page 3	

Chemistry, Chapter 7		NAME:		
Page 3				
1.	Sodium		/	
	a. Na	152252p635	/ valence electron	
2.	Sodium Cation	102 - 0	ð	
	a. Na ⁺¹	1522522p6	valence electrons	
	i. Sam	e configuration as Neon, a nob	e gas	
ii. Group 1	Lions always have a d	charge of + /		
b. Group <u>2</u>	Cations			
i. Atoms i	n Group 2 lose their	2 valence electrons		
1.	Magnesium		•	
	a. Mg	152252p6352	valence electrons	
2.	Magnesium Cation		~	
	a. Mg +2	1522522p6	valence electrons	
	i. Sam	e configuration as Neon, a nob	e gas	
ii. Group 2	2 ions always have a c	charge of		
c. Transi	tion Meta	l Cations		
	•	e transition metals may	. (4	
		Fe +3 are both possible iron		
d. Group 13 Cation		2		
i. Atoms i	n Group 13 lose their	valence electrons		
1.	Aluminum	. 700- / 000 /	2	
	a. Al	152252p63523p1	valence electrons	
2.	Aluminum Cation	•		
	a. Al ⁺³	1522522pl	× valence electrons	
	i. Sam	e configuration as Neon, a nobl	e gas	
e. Cations with cha	arges of $\frac{73}{2}$	or greater are uncommon		
7. Anions are produced wh	nen an atom	gains one or n	nore valence electrons.	
a. Name	- <u>S</u> of an	anion typically end in	1111	
i. Example	es:	,	can also be wri	te
1.	Chlorine becomes	chloride	(Cl-1) C1 -	
2.	Oxygen becomes	oxide	(O ⁻²)	
			(N-3) N 3-	

Chemistry, Page 4	Chapter 7	NAME:	
	Atoms of <u>Nonmetals</u> er	and metalloids	form anions by
	gaining er	nough valence electrons to attain t	he electron
	configuration of the nearest noble		
8. Anions			
a.	Group 17 Anions		
	i. Group 17 atoms are know		1
	ii. Group 17 anions are calle	d Halide	lons
	1. All halogen atoms	s have valence electro	ons and need to gain only
	l elect	tron to achieve the electron config	uration of a noble gas.
	iii. Atoms in Group 17 gain o	ne valence electron	
	1. Fluorine	1.2225	Π
	a. F	152252p5	valence electrons
	2. Fluoride	1,2,2,2,0	O
	a. F ⁻¹	1522522p6	<u>∆</u> valence electrons
		ame configuration as Neon, a nobl	e gas
	iv. Group 17 ions have a cha	rge of	
b.	Group 16 Anions	7	
	i. Atoms in Group 16 gain _	2 valence electrons	
	1. Oxygen	1,22 22 4	1.
	a. O	152522p4	valence electrons
	2. Oxide	1,2226	62
	a. O ⁻²	13 Ls Lp	<u>∆</u> valence electrons
		ame configuration as Neon, a nobl	e gas
	ii. Group 16 ions have a cha	rge of	
C.	Group 15 Anions	2	
	i. Atoms in Group 15 gain _	valence electrons	
	1. Nitrogen	1-27-273	F
	a. N	1522522p3	valence electrons
	2. Nitride	152 7-2 2 10	∇
	a. N ⁻³	13 25 2p	valence electrons
		ame configuration as Neon, a nobl	e gas
	ii. Group 15 ions have a char		
d.	Anions with charges of	or greater are uncommon	

Chemistry, Chapter 7 Page 5			NAME:	1.4.5
Section 7.2 – Formation of Ionic Co	mpounds			
9. /Onic a. Although they are com				nd anions
i. The total	asitive le	charge of the	rge of the cations e	equals the total
			ns of electrostatic fo	
i. The electrostat bonds	ic forces that hol	ld ions togeth	er in ionic compou	nds are called ionic
c. Ionic compound examp	ile:			
i. Sodium chlorid	e			
1. Na Cl				
Before			AF	ter
Before Na·	• <u>C</u> l:	>	Na+	:Ċl:¯
$1s^22s^22p^6\mathcal{J}_{\mathcal{S}}$	$^{2}2p^{6}3s^{2}3p^{5}$	-	$1s^2 \underline{2s^2 2p^6}$	$\begin{array}{c} \text{:Cl:} \\ \text{:Cl:} \\ 1s^2 2s^2 2p^6 3s^2 3p^6 \end{array}$
			octet	octet
10. Formula	Units – the form	nula unit shov	s the ratio. of the	atoms of each
element in an ionic compound.				
a. Examples: i. Na C	L	is the chemic	al formula for sodi	um chloride

i. Na Cl. is the chemical formula for sodium chloride

1. Ratio: For every 1 Na, there is 1 Cl.

ii. Al BC3 is the chemical formula for aluminum bromide

1. Ratio: For every 1 Al, there are 3 Br

b. Ionic compounds exist as collections of POS/hVely and charged ions arranged in a repeating PAHCM

c. A formula unit is the lowest whole number AD of ions in an ionic compound

11. Predicting Formulas of Ionic Compounds

- a. Potassium and oxygen
 - i. K Group 1

valence electron

ii. O Group 16

iii. Remember – overall charge of an ionic compound must equal

 $K \cdot O: \rightarrow K \cdot O: ^{-2}$

K+1

One OCharges +1 +1 -2 =0

- iv. Express the electron dot structure as a formula

1. _ K20 _____, potassium oxide

b. Magnesium and nitrogen

i. Mg Group 2 _____ valence electrons

ii. N Group 15

_____ valence electrons

Three Mg

Mg+2 :N:-3
Mg+2

Charges +2 +2 +2 -3 -3 =0

- iv. Express the electron dot structure as a formula

 1. $\frac{M93N2}{}$, magnesium nitride

Chemistry, Chapter 7 Page 7	NAME:
c. Calcium and fluoride i. Ca Group 2 ii. F Group 17 iii. Remember – ov	valence electrons verall charge of an ionic compound must equal
• Ca • • F •	→ ca :F: 1 One Ca F: 1 Two F
	Charges +2 -1-1=0
	ctron dot structure as a formula CaF2, calcium fluoride
12. Properties a. Most ionic compounds a	of Ionic Compounds are <u>Crystalline</u> Solids
·	ions are arranged in repeating 3 – Dimensional
opposites repulsi	ngly <u>attracted</u> to each of its neighbors and <u>ONS</u> are minimized $+-+-$ <u>Cation</u> (+ ion) is surrounded by
· Likes repel 2. Each_	anions (-ions) + -+- anion is surrounded by <u>Cations</u>
a. b. Ionic compounds genera	The large attractive forces result in a very Stable structure ally have high melting points anduct an Clectric current when
1 1	or dissolved in water

i. When dissolved, the ions are free to _______ about in the solution.

Chemistry, Chapter	7
Page 8	

- d. lonic compounds tend to be britle
 - i. If an ionic crystal is struck with a hammer, the blow tends to push the positive ions close together. The positive ions repel one another, and the crystal shatters.
- e. Ionic compounds have a difference in <u>Electronegative Hes</u>that is greater than 1.7 2.0

$$|0.8 - 3.5| = 2.7$$

Section 7.3 - Metallic Bonding

13.	Metal	lic
10.		

Metallic

Bonds and Metallic

Populies

a. Metals consist of Closely packed cations and loosely held valence electrons

b. The valence electrons of atoms in a pure metal can be modeled as a __

of electrons

i. The valence electrons are ______mobile _____ and can

freely from one part of the metal to another.

c. Metallic bonds are the forces of attraction between the <u>free-floating</u> valence electrons and the positively charged metal ions. These bonds hold metals together.

14. Properties of Metals

a. Metals are good <u>Conductors</u> of electric current because electrons can

 $\frac{flow}{} \qquad \qquad \text{freely in the metal} \\ \text{b. Metals are} \qquad \frac{\textit{ducfile}}{} \qquad \text{(can be drawn into wires) due to the mobile} \\$

electrons c. Metals are _______, which means they can be hammered or pressed into shapes, due to the mobile electrons

• •	y, Chapter 7	NAME:	
Page 9			
d.	. When a metal is subjected to pressure, th	e metal cations easily	
	Slide past one a	another	
15. Alloys			
a.	,	of two or more elements	s, at least one of which is
	<u> </u>		
	i. <u>Brass</u>	alloy of copper and zinc	
	ii. Bronze -	copper and tin	
b.	Alloys are important because their proper	ties are often superior to	those of their
	component elements	,	
	i. Sterling	silver	92.5% silver and 7.5%
	copper.		
	1. Harder and more durable	than pure silver, yet still	soft enough to be made
	into jewelry and tablewar	e	
	ii. <u>Cast</u>	iron -	96% iron and 4% carbon
c.	The most important alloys today are		-
	i. Most steels contain iron and carbo	on and a mixture of boroi	n, chromium, manganese
	molybdenum, nickel, tungsten, and vanadium.		
	ii. <u>Stainless</u>	Steel	includes 80.6% iron,
	18% chromium, 0.4% carbon, and	1% nickel	
d.	Alloys can form from their component ato	ms in different ways	
	i. <u>Substitutional</u> all	loy – if the atoms of the c	omponents in an alloy
	are about the <u>Same</u>	size, they car	replace each other in
	the crystal		
	ii. <u>Interstitial</u> all	loy – if the atomic sizes ar	re quite
	<u>different</u> , th	e smaller atoms can fit in	to the interstitial spaces
	(interstices) b	etween the larger atoms	