Chemistry	Chapter 5
p. 1	

NAME:		
INAIVIL.	 	

Chapter 5
Section 5.1 – Revising the Atomic Model Models of the atom throughout history:
1. Dalton's " Ball" Model
a. The atom is a tiny, indestructible particle with no internal structure.
2. Thomson's "Plum " Model
a. The atom is a sphere of positive electrical charge with electrons evenly distributed throughout it
b. Knew that the overall charge of an atom is neutral (electrons = protons)
3. <u>Rutherfords</u> Atomic Model
a. Most of an atom's mass is concentrated in the small, positively charged nucleus. The electrons ar
in motion in the space around the nucleus.
b. Limitations:
i. It explained only a few simple properties of atoms
ii. It couldn't explain the <u>Chemical</u> properties of elements
4. Bohrs Atomic Model
a. Electrons move in <u>Circular</u> orbits at fixed distances from the
nucleus.
b. He changed Rutherford's model to incorporate newer discoveries about how the energy of an
atom changes when the atom absorbs or emits light.
c. He proposed that an electron is found only in specific circular paths, or <u>orbits</u> ,
around the nucleus
i. Each possible electron orbit in Bohr's model has a fixed energy
 The fixed energies an electron can have are called energy levels.
2. A <u>quantum</u> of energy is the amount of energy required to move an
electron from one energy level to another energy level
a. Similar to rungs on a ladder
i. A person cannot stand between the rungs. Electrons in an atom
cannot exist between energy levels

closer together

ii. Energy levels are unequally spaced. Higher energy levels are

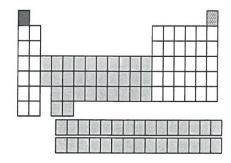
ii. The Rutherford model couldn't explain ______ elements that have been heated to higher and higher temperatures give off different colors of light. Bohr model explains

	nistry	/ Chapter 5 NAME:
p. 2		how the <u>energy</u> <u>levelo</u> of electrons in an atom
	_	change when the atom emits light.
5	_0	wantum Mechanical Model
	a.	Previous models described the motion of electrons in the same way as
		objects move. The quantum mechanical model uses <u>mathematical</u> equations to
		describe the behavior of electrons.
		i. Schrödinge used theoretical calculations to describe the behavior of the
		electron in a Hydrogen atom
		ii. The modern description of the electrons in atoms came from the mathematical
		56 whos to the Schrödinger equation.
	b.	to Bohr model:
		i. Quantum mechanical model restricts the energy of electrons to certain values
	c.	Different from Bohr model:
		i. Doesn't specify an exact path the electron takes around the nucleus
	d.	The quantum mechanical model determines the allowed energies an electron can have and how
		it is to find the electron in various locations around the
		nucleus of an atom.
	e.	In the quantum mechanical model, the of finding an electron within a
		certain area surrounding the nucleus can be represented as a region.
	f.	The Schrödinger equation gives the energy levels that an electron can have.
		i. Atomic each energy level is represented as a region of space
		where there is a high of finding an electron
		1. The energy levels of electrons are labeled by principal quantum numbers (🖺)
		Quantum numbers are assigned values (n=1, 2, 3, 4)
		2. For each principal energy level greater than 1, there are several orbitals with
		different shapes and at different energy levels.
		3. Forms energy sublevels.
		ii. Each energy sublevel corresponds to one or more orbitals of different shapes. The
		describe where an electron is likely to be found.
		iii. Different atomic orbitals are represented by letters
		1. orbitals are Sphorical

Chemistry Chapter	5 NAME:
p. 3	
	2. porbitals are dumb bell shaped 3. dorbitals are balloon -shaped
	3. orbitals are <u>Da//oon</u> -shaped
	a. 4 of the 5 d orbitals have the same shape but different orientations in
	space
iv.	The number and types of atomic orbitals depend on the principal energy level. It also
	determines the maximum number of electrons
	1. <u>Sublevel s</u> : equal to the quantum number, n
	2. Number of <u>Orbitals</u> : equal to n ²
	3. Number of <u>electrons</u> : equal to 2n2
6. Section 1 Sumi	
a. Energy	levels in atoms. <u>ElectronS</u> in atoms are found in fixed energy levels
i.	Bohc proposed that electrons move in specific
	around the nucleus.
ii.	In these orbits, each electron has a energy called an energy level.
iii.	A <u>quantum</u> of energy is the amount of energy needed to move an electron
	from one energy level to another.
b. Quanti	m Mechanical Model. The quantum mechanical model determines how
likely i	is to <u>find</u> an electron in various locations around the atom.
ì.	The quantum mechanical model is based onmathematics, not on
	experimental evidence.
ii.	This model does not specify an path an electron takes around
	the nucleus, but gives the pobability of finding an electron within a
	certain volume of space around the nucleus.
iii.	This volume of space is described as an <u>electron</u>
	, which has no boundary.
	The electron cloud is denser where the probability of finding the electron is high.
c. Atomic	Orbitals
i.	An atomic Orbital describes where an electron is likely to be
	found.
ii.	Numbered outward from the, each energy level is assigned a

principal quantum number, n, which is also the number of sublevels.

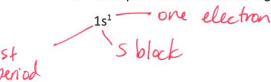
Chemistry Cha	pter 5
p. 4	


- iii. Each energy sublevel differs in shape and orientation and contains orbitals, each of which can contain up to ____ electrons.
- iv. Each energy level contains a maximum of $\frac{2n^2}{2}$ electrons.

Section 5.2 Electron Arrangement in Atoms

- 7. Electron Configuration
 - a. There are 4 "blocks" on the Periodic Table

i.	5_ block	Groups
ii.	_d_block	Groups $3 - 2$
ii.	block	Groups <u>13</u> – <u>18</u>



b. Each block can hold a specific amount of electrons

i.
$$\frac{5}{\text{block}} = \frac{2}{\text{electrons}}$$
ii. $\frac{1}{\text{block}} = \frac{6}{\text{electrons}}$
iii. $\frac{1}{\text{block}} = \frac{10}{\text{electrons}}$
iv. $\frac{1}{\text{block}} = \frac{14}{\text{electrons}}$

- c. For each element, we can write out the _______ con figuration_ of its electrons.
- d. We can use the "Electron Configuration" to <u>account</u> for all of an atom's electrons.

 i. A combination of <u>letters</u> and <u>numbers</u> are used.
 - 1. The number will help us figure out which <u>period</u> it is in and the letter tells us which <u>lock</u> it is in.
 - ii. Example the electron configuration of Hydrogen is

91

	₩ 2	4	Ιœ	4	(0)	7	14		KI ω		7			
		2000	18	0	36	4904	2	300	98	909	1			
₹	9 Ne		17 14	,,,	5	7	3 Xe	N	85 R	0	4		7	*
		265			3	408	53	505	. 0	65			_	*"74
	L		25	w	占	7	-	10	=	9			0	7
	8	7	16	7	8	7	52	7	8	7			1.	
	0	264	S	3	3	7	Te e	Spy	2	9			5	
	-	n	15	80	33	33	51	3	83	3	1		9	
	5 C 6 N 7 0	263	13 Si 14 P 15 S 16 CI	363 364 365	24 Min 25 Fe 26 Co 27 Ni 28 Cu 29 Zn 30 Ga 31 Ge 32 As 33 Se 34 Br 35 Kr	roh soh roh	47 Cd 48 In 49 Sn 50 Sb 51 Te 52	265 263	79 Mg 80 TI 81 Pb 82 Bi 83 Po 84 At	500) 400 8000 500 100 4 6182			60 Pm 61 Sm 62 Eu 63 Gd 64 Th 65 Dy 66 No 67 Er 68 Tm 69 Vh 70 Lu 71	
	9	202	14	2	32	2	20	2	82	~	1		89	
	0	3	25	305	e e	7	5	S	2	8			山	
	20		13		31		49		84		1		67	
	60	7	2		rg	4	-	20	_	9			옾	
			1=		8	*	8	*	000	*	-		99	
		152232 201		352	655	34°* 401	4	* o. Ph	200	0 10			8	
		52		206	160		2		6	41	1		65	
				25	-								e	
				1252767325	25		46 Ag		78 Au		-		28	
				_	22								3	
					室		45 Pd		77				63	
					27		\$		1					
					8		듄		ᆂ				32	
					26		4 ≅		76					
					Fe		2		Os				15	
					25		42 Tc 43 Ru		75 0\$				9	
					£		9		36				墨	
					24		42		74 Re					
					ප		£		=				PM 69	
					23 (41		73				53	
							Victoria .				+		뇬	
				17	22		40 Nb		72 Ta				58 Pr	
				- 8			Fr. Same		SHELL .				3	
					=	- 4	<u>77</u> 6		出 /	A+.1)	0			()
					24		39		22		88			
		44	202		ઝ		>		2	الم	:2	112.58		
	4	282	12	4*	20	*	38	22,4	56	25	88	2 *		
	8	13.	Mg	33	ප	452		is.		9	2	7		
1 - 2	6	-0	=	-5	19	- 5	37	-8	55	-0	87	-5		
		8	2	8	=	48,	2	V.	ప	8	ᆂ	-		

42

352 360

Chemistry	Chapter	5
p. 6		

NAME:		
INAIVIE.		

the

e.	. We can find the electron configuration for any elen	nent and write out a long chain to show all th
	"_Stopping Doints" along the way.	
	i. Syperscript (look like exponer	nts) <u>add</u> up to the atomic number
f.		
	i. H	
	ii. He 15 ²	Stopping point for the layer
g.	2 nd period	
	i. Li 5 ² 25	
	ii. Be $15^2 25^2$	Stopping point for the $\frac{25}{25}$ layer
	iii. B \52 252 2p1	Just entered the p block
	iv. c 5 ² 25 ² 2n ²	,
	v. N 152 252 203	
	vi. 0 152 252 2p4	
	vii. F 52 252 205	
	viii. Ne 152 252 2p6	Stopping point for the layer
		(p=6 electrons)
h	3 rd period	(p o clean only)
11.	12222122	2
	i. Mg 15 25 2p 35	Stopping point for the $\frac{3}{2}$ layer (s = 2)
	ii. Ar 15 25 2p 35 3p	Stopping point for the layer (s=6)
i.	4 th period	
	i. ca 52 252 2p6 352 3p6 452	
	1. Stopping point for $\frac{45}{9}$ layer (s=2)	
	ii. zn 152 252 2p6 352 3p6 452	34 10
	1. Stopping point for 3d layer (d=10	0)
	iii. Kr 152 252 2p6 352 3p6 452	30 406
	· · · · · · · · · · · · · · · · · · ·	
	1. Stopping point for 4p layer (p=6))
j.	5 th period	2110 11 1-6-2
	i. Sr 52 252 2p6 352 3p6 452	
	1. Stopping point for $\frac{55}{1}$ layer (s = 2	2)
	ii. cd 152 252 2p6 352 3p6 452	3d" 4p6 5s 7d
	 Stopping point for 4d layer (d=10) 	0)
	iii. Xe 152252 2pt 352 3p6 45	2 3d " 4p6 5s2 4d" 5p6
	1. Stopping point for 5p layer (p=6)	
	1	* *

12		
k.	6 th	period
11.	U	PCITO

- i. Ba 152252p6 3523p6 4523d104p6 5524d105p6652
 - Stopping point for 65 layer (s=2)
- ii. Lu s22s22p6 352 3p6 452 3d10 4p6 552 4d10 5p6 652 4f14
 - 1. Stopping point for 4F layer (f=14)
- iii. Hg 1522522p63523p6 4523d" 4p6 552 4d10 5p6 652 4f145d"
 - Stopping point for <u>5</u>

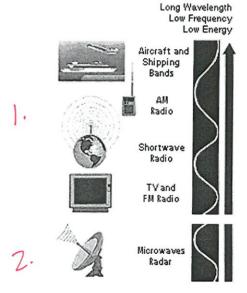
 √ layer (d=10)
- iv. Rn |522522p63523p64523d104p65524d105p66524f145d106p6
 - 1. Stopping point for 6p layer (p=6)

				10 10	
8	1/	d	lence		electrons

- a. Valence electrons are those in the <u>highest</u> or <u>bial levels</u>. They are the electrons that are able to be <u>gained</u>, <u>lost</u>, or <u>bonds</u>.
 - i. Example Chlorine (CI)
 - 1. $15^2 25^2 20^4 35^2 30^5$ Valence electrons = $\frac{2+5}{7}$
 - ii. Example: Germanium (Ge)
 - 1. $\frac{|5^2 25^2 2p^6 35^2 3p^6 45^2 3d^{10} 4p^2}{|5^2 25^2 2p^6 35^2 3p^6 45^2 3d^{10} 4p^2}$ Valence electrons = $\frac{4}{9}$
- b. Another way to find the number of valence electrons look at the group number
 - i. <u>S</u> block only
 - 1. Group ____ all elements only have _____ valence electron
 - 2. Group 2 all elements only have 2 valence electrons
 - ii. P block only
 - 1. Take the group number and subtract 10
 - a. Group 13 all elements have 3 valence electrons
 - b. Group 14 all elements have 4 valence electrons
 - c. Group 15 all elements have 5 valence electrons
 - d. Group 16 all elements have ____ valence electrons
 - e. Group 17 all elements have 7 valence electrons
 - f. Group $\frac{18}{}$ all elements have $\frac{}{}$ valence electrons
 - i. 1 exception Helium (15^2)
 - 1. It is in Group 18, but it only has a total of ____ electrons

Chemistry Chapter 5	NAME:
p. 8	(f block)
2. <u>Ad</u>	up the electrons in the highest levels Copper 15 ² 25 ² 2p6 35 ² 3p6 4s 3d10
	i. Has valence electron
b.	Titanium \522522p63523p64523d2
	i. Has 2 valence electrons
9. Noble	905 Notation
a. " Shortcut	
i. Find the eleme	ent whose electron configuration you need to write
ii. Find the 1	from the period
above	it (element in Group)
iii. Place the symb	pol of the noble gas in brackets []
iv. Write out only	the " points" for the information that follows
1. Silicon)
a.	Electron Config $\frac{5^2 2s^2 2p^6 3s^2 3p^2}{5^2 2s^2 2p^6 3s^2 3p^2}$
b.	Noble gas before it Neon
c.	Noble gas notation [Ne] 3s 2 3p 2
2. Polonii	um (has 84 electrons)
a.	Noble gas before it Xenon
b.	Noble gas notation
b. The noble gas notation	is listed for $\underline{\text{every}}$ element on our "Colorful" Periodic Table (at the bottom
of each box)	Group 7

25 🗖 1.5 Mn


[Ar] 4s² 3d⁵

	nistry Chapter !	5		NAME:
p. 9				
10. T	here are	_ rules that tell you how t	o find the electron conf	igurations of atoms:
	a. Au	fbau principl	//	
	i.	Electrons occupy the orb	oitals of Wes	energy first.
	b. <u>Pau</u>	<u>ui</u> exclusio	on principle	
	i.	At atomic orbital may de	scribe, at most, $\frac{2}{}$ e	electrons
		To occupy the Same		"
		opposite	spins (electron spins m	ust be <u>Paired</u>).
		1. Spin	is a quantum m	echanical property of electrons and may
		be thought of as	clockwise or counterclo	ckwise
		2. Acrows	are used to indi	cate electrons and the direction of spin
		(↑or ↓)	. (
		3. An 000	containing p	aired electrons is written as $\uparrow \downarrow$
	c. Hu	rule_		
	i.	The state of the s		energy in a way that makes the
		number	of electrons with the	Same spin direction as
	011	large	as possible.	
11	Orbital	Notation		
	a. Each line	e can hold 2 electro	ns (Pauli exclusion princ	ciple)
	b. Three ele	ectrons (in the p orbital)	would occupy three orb	itals of equal energy (Hund's Rule)
	\uparrow \uparrow	<u></u>		
S orbitals	s^1	1	s²	14
P orbitals	p ¹	<u>^</u>	p ⁴	1 1 1
	p ²	1 1	p ⁵	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		1 1 1	O. ■ E	1 1 1
	p ³	<u> </u>	p ⁶	14 14 14
D orbitals				0.000
	d^1	<u> </u>	_ d ⁶	
	d^2	<u> </u>	_ d ⁷	1 1 1 1
	d^3	111	_ d ⁸	17 1111 1
	d^4	\uparrow \uparrow \uparrow \uparrow	_ d ⁹	11 11 11 11 1
	d ⁵	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	d ¹⁰	14 14 14 14 14
	~		_ ~	

	NAME:
	1
A A . A . A . A	<u>/</u>
Alara AAA	<u></u>
A . A . A . A . A	<u>T</u>
f^{11} $T \downarrow T \downarrow T \downarrow T \downarrow T$	<u>T</u>
f^{12} $TV \uparrow V \uparrow V \uparrow V \uparrow V \uparrow V$	1_
f ¹³ 11 11 11 11 11	<u>^</u>
f14 11 11 11 11 11 11	14
notation $ \begin{array}{c} $	<u>↑</u> ↑ ↑
	4ρ
	oor of cloatrons in
equal the number of electrons in the	atom.
Quantum Mechanical Model	
Wave Model	
d of waves	
a wave is the wave's height from zero	
ne distance between crests. Represe	inted by the Greek
he number of wave cycles to pass a g	iven point per unit
eek letter nu ()	
and is called the Hert 2	<u>(HZ)</u>
	f ¹³ f ¹⁴ Note that the first sequal sequal the number of electrons in the first sequal sequence of the superscripts equals the number of electrons in the first sequence of the superscripts equals the number of electrons in the first sequence of the superscripts equals the number of electrons in the first sequence of the superscripts equals the number of electrons in the first sequence of the superscripts equals the number of electrons in the first sequence of the electrons in the first sequence of the electron

p. 11

- b. The speed of light is the product of frequency and wavelength. The speed of light is a ______, 2.998 x 10⁸ m/s.
 - i. $c = \lambda v$
- c. Frequency (v) and wavelength (λ) of light are inversely proportional to each other.
 - i. As the wavelength ______, the frequency decreases
 - ii. As the frequency ______, the wavelength decreases
 - 1. Long wavelength = ______ frequency
 - 2. Short wavelength = <u>high</u> frequency
- d. According to the wave model, light consists of <u>electromagnetic</u> waves
 - i. Electromagnetic radiation includes radio waves, microwaves, infrared waves, visible light, ultraviolet waves, X-rays, and gamma rays
 - ii. All electromagnetic waves travel in a <u>Vacuum</u> at a speed of 2.998 x 10⁸ m/s
 - 1. Hotter, more energetic objects and events create higher energy radiation than cool objects.
- e. Types of radiation, from longest wavelength to shortest:

- 1. Radio
 - same kind of energy that radio stations emit into the air
 - Radio waves are also emitted by stars and gases in space.

2. Microwaves.

- Used to cook popcorn in just a few minutes!
- In space, microwaves are used by astronomers to learn about the structure of Milky Way galaxy and other galaxies

Infrared Light

- makes our skin feel warm
- In space, IR light maps the dust between stars.

4. Visible .

- the part that our eyes see
- Emitted by everything from fireflies to light bulbs to stars also by fast-moving particles hitting other particles.

Ord	ler is	ROYGBI	V

0	Red	
0	Orange	
0	yellow	
0	Green	

5.		Ultraviolet Light	o Orange o Yellow o Green o Blue o Indigo Violet
6. 7.	Outh	X-rays Gamma-rays Short Wavelength High Frequency High Energy	 5. Ultraviolet : a sunburn is the result of the Sun's UV rays Stars and other "hot" objects in space emit UV radiation. 6.
			 7. Gamma (ays: radioactive materials (either from natural sources or made by nuclear power plants) emit gamma-rays
15. A	ener	energy <u>absorb</u> gy level to a higher er	Spectra

p. 13

b. Each ______ has a specific atomic emission spectrum that is ______ for only that element. No _____ elements have the same emission spectrum.

- 16. Calculating frequency and wavelength
 - a. To calculate <u>Frequency</u> (v):
 - i. 1st convert the wavelength in nm to meters
 - ii. 2^{nd} plug into the formula $v = \underline{c}$

iii. 3rd – check significant digits and label as Hertz (Hz)

b. Example: Calculate the frequency of a light with a wavelength of 425 nm

$$154 \quad 425 \, \text{nm}. \quad \frac{1 \, \text{m}}{1 \times 10^{-9} \, \text{nm}} = 4.25 \times 10^{-7} \, \text{m}$$

$$2^{nd}$$
 $V = \frac{c}{\lambda} = \frac{2.998 \times 10^8 \text{ m/s}}{4.25 \times 10^{-7} \text{ m}} = 7.054117647 \times 10^{14} \text{ Hz}$

- c. To calculate wavelength (λ)
 - i. 1^{st} no conversion is needed, as long as the frequency is given in Hertz (Hz)
 - ii. 2^{nd} plug into the formula $\lambda = c/v$
 - iii. 3rd check significant digits and label as meters (m)
- d. Example: Calculate the wavelength of a light with a frequency of 3.05 x 10 5 Hz

$$\lambda = \frac{C}{V} = \frac{2.998 \times 10^8 \text{ m/s}}{3.05 \times 10^5 \text{ Hz}} = 982.9508197$$

	y Chapter 5 NAME:
p. 14	Pacticle
17. The N	The <u>photoelectric</u> effect - <u>electron S</u> are ejected when light
a.	The photoelectric effect - electrons are ejected when light
	shines on a metal.
b.	Planck showed mathematically that the amount of radiant energy (E)
	of a single quantum absorbed or emitted by a body is proportional to the
	i. E = hv of radiation (v).
	1. Planck's constant (h) has a value of 6.626×10^{-34} Js
c.	<u>Einstein</u> used Planck's quantum theory to explain the photoelectric
	effect.
	i. The photoelectric effect couldn't be explained by classical physics (which described
	light as a form of energy). One assumption was that under weak light of any
	wavelength, an electron in a metal should eventually collect enough energy to be
	ejected. However, red light will not cause potassium to eject electron, no matter
	how intense the light. Yet a very weak yellow light shining on potassium begins the
	effect.
d.	To explain the photoelectric effect, Einstein proposed that light could be described as
	quanta of energy that behave as if they were
	i. Light quanta are called <u>photons</u>
	1. Einstein's theory that light behaves as a stream of particles explains the
	photoelectric effect and many other observations.
	ii. Light behaves as a wave in some situations. Einstein
	concluded that light must have both wavelike and particle-like properties
e.	The light emitted by an electron moving from a higher to a lower energy level has a
	frequency directly proportional to the energy change of the electron.
	i. Neon lights – each different gas has its own characteristic
	emission spectrum, creating different colors of light when excited electrons return
	to the ground state.