Chapter 18 Reference Sheet

- 4 factors that affect the rate of a reaction:
 - o Temperature
 - Increase in temperature
 - Increase in particle movement
 - Increase in kinetic energy
 - Increase in rate of reaction
 - Cause it to go from a solid to a liquid or a liquid to a gas
 - Decrease in temperature
 - Decrease in particle movement
 - Decrease in kinetic energy
 - Decrease in rate of reaction
 - Cause it to go from a gas to a liquid or a liquid to a solid
 - Concentration
 - Increase in concentration = increase in rate of reaction
 - Decrease in concentration = decrease in rate of reaction
 - Particle Size
 - Decrease in particle size = increase in surface area = increase in rate of reaction
 - Use of a Catalyst
 - Decrease the activation energy (amount of energy needed for reaction to take place)
 - Decrease the amount of time a reaction will take place
 - Are not used up in the reaction (quantity of catalyst remains the same)
- Le Châtelier's Principle
 - Concentration
 - Adding product → reactants
 - Adding reactant → product
 - Temperature
 - Adding heat → reactants
 - Removing heat → product
 - Pressure
 - Adding pressure → product
 - Reducing pressure → reactants
 - Catalysts do not affect the amounts of reactants and products at equilibrium
- Types of Reactions
 - o Exothermic heat is exiting the system
 - Endothermic heat is entering the system

Chapter 20 Reference Sheet

- Types of Reactions
 - o Synthesis: two or more substances combine to form one new compound
 - $A + B \rightarrow AB$
 - Decomposition: a single compound breaks down into two or more simpler substances
 - AB \rightarrow A + B
 - o Single replacement: one element replaces a similar element in a compound
 - \blacksquare AB + X \rightarrow AX + B
 - o Double replacement: two compounds trade places to form two new compounds
 - AB + BY \rightarrow AY +BX
 - Combustion: a substance combines with oxygen (O₂)
 - $\bullet A + O_2 \rightarrow$
 - Oxidation Reduction
 - Change in oxidation numbers
 - Acid + Base \rightarrow salt + H₂O
 - Also known as a neutralization reaction
- Oxidation
 - Gaining oxygen
 - Losing electrons
 - Complete loss of electrons
 - Shift of electrons away from an atom in a covalent bond
 - Loss of hydrogen by a covalent compound
 - o Increase in oxidation number
 - Oxidizing agent accepts electrons
- Reduction
 - Losing oxygen
 - Gaining electrons
 - Complete gain of electrons
 - Shift of electrons towards an atom in a covalent bond
 - Gain of hydrogen by a covalent compound
 - o Decrease in oxidation number
 - Reducing agent donates electrons
- Aqueous Solutions water contains dissolved substances
 - Solute
 - Smaller quantity in a solution
 - Portion that is dissolved
 - Solvent
 - Larger quantity in a solution
 - Portion that does the dissolving
- Diffusion
 - o Movement from an area of high concentration to an area of low concentration